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Abstract

An alternate approach to exciting a one-dimensional structure with discontinuities using a piezoelectric actuator is

presented and examined. Instead of being bonded to the uniform side of a beam, the piezoelectric actuator is attached such

that it spans two adjacent rib discontinuities. In this configuration, the actuator generates an eccentric actuation force on

the structure and induces both axial and transverse motions. The goal of this work is to first model the axial and transverse

response caused by the piezoelectric actuator. Then, the change in that response is examined for the case where an external

disturbance force is present. The system is modeled by coupling the piezoelectric strain and structural dynamic response.

The characteristics of the voltage-generated piezoelectric forces are discussed through numerical examples. The structural

response found using the dynamic force–voltage model for the actuator is then compared to the response when the

actuator model is approximated by its static or zero-frequency value. Furthermore, the ability of the actuator to potentially

provide better control authority by using this alternate configuration is examined. The numerical study shows that when

the actuator spans two discontinuities, there is potential for greater control authority than when that same actuator is

placed on the uniform side of the structure.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Active vibration control of beam-like structures using surface-bonded piezoelectric actuators has been
extensively studied. Early work by Crawley and de Luis [1] demonstrated the effective use of piezoelectric
actuators in controlling beam vibrations. In their work, Crawley and de Luis analyzed the stresses, strains, and
loads generated on a one-dimensional (1-D) cantilevered beam by piezoelectric actuator pairs bonded
symmetrically on both sides of the beam or embedded in the beam structure. Their research showed that, in
the limiting case when the bonding layers between the actuator and structure are infinitely thin and stiff, the
excitation from the piezoelectric actuators acts as two line moments concentrated at the two ends of the
actuators. Clark et al. [2] developed a theoretical model to predict the response of a simply supported beam
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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excited by multiple pairs of piezoelectric actuators. Their work demonstrated the use of multiple independent
actuators to excite particular modes. Clark et al. [2] also conducted experiments and compared the
experimental and theoretical results. Further modeling work was done by Dimitriadis et al. [3] who examined
the case of piezoelectric actuation pairs symmetrically bonded on a 2-D plate. In that work, the induced
actuation moments were determined and the modal responses were compared for different actuator locations.

While symmetric bonding of actuators on the upper and lower surfaces of a structure can be used to induce
pure bending moments in the structure, a single piezoelectric actuator simultaneously excites both extensional
and flexural motions in a structure, as shown by Gibbs and Fuller [4]. An analytical model for a single
piezoelectric element bonded on the surface of a thin long beam was developed by those authors. The results
showed that a single actuator is mathematically equivalent to a combination of moments and in-plane forces
located at the ends of the actuator. Using a similar approach, the 1-D piezoelectric asymmetric excitation
model was extended to a 2-D plate vibration excitation model [5]. In that work, the induced distributed
moments in the both x- and y-directions were determined.

In the works described above, the induced actuation strains in the underlying structures were found using
static approaches. That is, the relationship between the applied voltage across the actuator thickness and the
resulting structural strain was formulated from an assumption of static equilibrium and the compatibility
equations [6]. Pan, Hansen, and Synder [7] developed a dynamic model for a simply supported beam with a
piezoelectric actuator pair bonded on the surface. Through solving the coupled dynamic equations of the
beam and the actuators, it was shown that, in order to obtain an accurate description of the strain field in the
structure, the coupled structural and piezoelectric actuator system should be modeled using a dynamic
approach. This was shown to be especially true for strains in the vicinity of the actuator.

Proper selection of actuator locations can be a critical issue when exciting or controlling a particular
vibration mode. Crawley et al. [1] found that, in order to excite a specific mode effectively, the actuator should
be placed in regions of high average strains for that mode and away from zero strains. The optimal size and
location of a piezoelectric actuator pair symmetrically bonded on a beam with arbitrary boundary conditions
were studied based on the modal cost and controllability index [8]. It is important to note that, in many cases,
actuators cannot be arbitrarily placed. For the study discussed in Ref. [5], the controlled structure of interest
was a simulated rack shelf used on International Space Station (ISS). On ISS, the laboratory experiments are
conducted in different experiment racks. In each rack, shelves are used to support an experiment. To reduce
weight, the top of the shelf surface is uniformly flat while most of the material on the opposite side is removed
to leave a waffle-like pattern of supporting ribs. To use active methods to reduce vibrations of the simulated
shelf, in that research, the actuators were placed in a typical manner to the uniform side of the shelf. However,
in practice, it may not be practical to mount the actuators on the uniform side of the shelf, as that side will be
taken up by items needed to operate the experiment. As such, it would be better from a logistical standpoint to
place the actuators on the side of the shelf with the waffle-like pattern. At the same time, the existence of the
ribs may present an opportunity to try an alternative approach to vibration control: mounting the
piezoelectric actuators at the ends of and between adjacent ribs.

As an extension of Ref. [5], which considered conventional actuator placement, this paper examines a new
perspective for actuator placement and actuator-structure modeling: instead of placing the actuator on the
uniform side of the structure, the piezoelectric actuator will be placed on the ribbed side of the structure, as
shown in Fig. 1(a) and (b). In Fig. 1(a), the primary input of the system is the external disturbance force, fp,
and the secondary (control) input comes from the actuator. The actuator spans the gap between two of the
ribs. In other words, the actuators are to be mounted on the side of a structure that contains significant
discontinuities. One of the motivations for considering this configuration is the potential for greater dynamic
control authority by the actuator, due to the actuator’s placement at a larger distance from the neutral axis of
the underlying structure. When a voltage is applied to the piezoelectric patch bonded across the ribs, the patch
attempts to expand or contract. However, this change of length is partially constrained by the stiffness of the
rib discontinuities and the base structure. As a result, under the assumption that no buckling occurs in the
piezoelectric actuator, the actuator will generate two equal and opposite forces on the edges of the ribs, as
shown in Fig. 1(b). At the same time, placing the actuator in such a configuration will impact the excitation
characteristics and actuator’s control authority. In this initial study, which is intended to examine potential
benefits of an alternative control approach, issues associated with the packaging requirements for this
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Fig. 1. Piezoelectric actuator on a one-dimensional discontinuous structure: (a) piezoelectric actuator spanning the rib discontinuities and

(b) equal and opposite piezoelectric forces acting on the discontinuities.
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piezoceramic actuator configuration are not considered, although potential solutions to this issue have been
examined previously [9]. It is assumed that the actuator has sufficient structural integrity to operate in this
configuration. A more detailed study of those packaging requirements along with their impact on the actuator
modeling will be the subject of future research. The axial actuation loads on the tips of the ribs will generate
bending moments on the beam due to the actuator’s eccentricity relative to the structural neutral surface. Since
the actuator is farther from the neutral axis in this case than when mounted on the uniform side, there is the
potential to generate larger flexural moments. It is important to note that the piezoelectric strain and force are
related to both the transverse and axial vibrations in the beam structure. As a result, vibrations in both of
these directions will be modeled. The control authority of this approach is influenced by several factors,
including actuator position and the geometric properties of the discontinuities, like the rib height. One of the
objectives of this work is to examine the impact of some of these parameters on the actuator’s dynamic control
authority. Prior to that study, though, the relationship between the actuator voltage and the resulting
structural stress and strain will be addressed.

In the following sections, an analytical model is developed to describe the dynamics of an actuator that is
mounted such that it spans two adjacent rib discontinuities. This work initially formulates this model from a
dynamic standpoint. The ability of a low-frequency description (i.e. o ¼ 0) to adequately represent that model
is then examined, to determine situations where the complexity of the full dynamic model is not needed and
the linearized approach may be sufficient. In addition to verifying some of the analytical modeling via
numerical models implemented using the finite element (FE) method, the impact of some of the important
structural characteristics on the control authority of the actuator is also examined. Note that the non-ideal
strain and the hysteresis properties of the piezoceramics described in Ref. [10] are not considered in this
research.

2. System modeling

A sketch of the beam with multiple rib discontinuities to be considered is shown in Fig. 1(a). The length of
the beam is L. The width and thickness of the beam are b and h, the height of the ribs is given by h1, the center
locations of the ribs are xci (i ¼ 1, 2,y,R). Note that the ribs are not uniformly spaced. For simplicity, the
lengths of all the ribs are equal and given by D. In addition, it is assumed that the ribs extend the full width of
the beam. A piezoelectric actuator is bonded such that it spans two adjacent ribs as shown in Fig. 1(a). As
mentioned earlier, it is assumed that the actuator can be encapsulated to operate in this configuration. Due to
the eccentric position of the actuation forces on the ribs, both transverse and axial vibrations will be induced
in the beam. The actual piezoelectric strain is determined by the applied voltage as well as the axial
displacement at the tips of the two ribs. This displacement will be due to both the transverse and axial
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vibration of the beam. Therefore, to obtain the piezoelectric actuator strain, actuator motions caused by both
axial and transverse beam vibrations are considered in this work.

In this section, models for the transverse and axial forced vibrations are first developed. The piezoelectric
strain and the structural dynamic response are coupled in order to determine the piezoelectric actuation force
and the structure strain. Furthermore, the effect of including the external disturbance force on the
piezoelectric actuation forces is investigated.

2.1. Modeling the forced vibration of a ribbed beam

The actuator generates two equal and opposite forces on the edges of the ribs. The transverse and axial
dynamic response of a ribbed beam due to the two harmonic forces caused by the actuator, as shown in Fig.
1(b), are predicted using the Ritz expansion method and Lagrange’s Equations. Note that while the external
disturbance force, fp, is present in the figure, it is not considered until a later section. First, for transverse and
axial vibrations, the kinetic and potential energy expressions for the structure are determined. In this model,
both the stiffness and inertia of the ribs are considered. The generalized force is then formulated based on the
virtual work resulting from the two point forces acting at the tips of the ribs. By solving the eigenvalue
problem for the unforced structure, the natural frequencies and modal shapes of the structure can be
determined. The dynamic response can then be expressed through a modal superposition. One of the
intentions of this initial study is to determine if further study of this configuration is warranted by potential
improvements in performance. To simplify this initial study, it is assumed that the transverse and axial
vibrations are uncoupled. The transverse forced vibration will be modeled first.

The transverse displacement of the beam is expressed by an N1-term Ritz expansion

wðx; tÞ ¼
XN1

j¼1

fjðxÞqjðtÞ; 0pxpL, (1)

where fj are the basis functions which satisfy the transverse geometric boundary conditions and qj are
the generalized coordinates. The generalized coordinates are assumed to have a harmonic time dependency,
given by

qj ¼ Re½W j e
iot�, (2)

where Wj is the complex amplitude of the generalized coordinate. The kinetic energy of the structure is

T ¼
1

2
rbb

Z L

0

hðxÞ
XN1

j¼1

fj _qj

XN1

l¼1

fl _ql dx, (3)

where rb is the beam density and h(x) is the thickness of the beam given by

hðxÞ ¼
hþ h1;x 2 ½xci � D=2;xci þ D=2�; i ¼ 1; 2; . . . ; R;

h otherwise:

�
(4)

Note that h1 describes the height of the rib above the beam surface shown in Fig. 1(a) and that all ribs are
assumed to have the same height. Substituting Eq. (4) into Eq. (3), the kinetic energy can be expressed as

T ¼
1

2
rbb

XN1

j¼1

XN1

l¼1

ðmTrjl þ ZTrjl Þ _qj _ql , (5)

where the superscript Tr represents transverse. It is seen from Eq. (5) that each generalized inertia coefficient is
comprised of two parts. The term mTrjl represents the inertia effects contributed by a uniform beam of thickness
h. The term ZTrjl represents the inertia effects contributed by the R rib discontinuities, each of thickness h1.
These inertia terms are

mTrjl ¼ h

Z L

0

fjfl dx, (6)
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and

ZTrjl ¼
XR

i¼1

h1

Z xciþD=2

xci�D=2
fjfl dx. (7)

The potential energy of the structure is

V ¼
1

2
Eb

Z L

0

IðxÞ
XN1

j¼1

f00j qj

XN1

l¼1

f00l ql dx; (8)

where Eb is the Young’s modulus of the beam and I(x) is the position-dependent moment of inertia given by

IðxÞ ¼
1

12
bh3
ðxÞ. (9)

Substituting Eq. (9) into Eq. (8), the potential energy can be expressed as

V ¼
1

2
Eb

XN1

j¼1

XN1

l¼1

ðkTrjl þ bTrjl Þqjql . (10)

Each generalized stiffness coefficient is also comprised of two parts. Here, kTrjl and bTrjl represent the bending
stiffness contributed by the uniform beam and the rib discontinuities, respectively. Note that by neglecting
the bTrjl terms, the rib discontinuities are then only modeled as distributed mass discontinuities through the
terms, ZTrjl . The two bending stiffness terms are

kTrjl ¼ I

Z L

0

f00j f
00
l dx, (11)

and

bTrjl ¼
XR

i¼1

I1

Z xciþD=2

xci�D=2
f00j f

00
l dx, (12)

where

I ¼
1

12
bh3, (13)

and

I1 ¼
1

12
bð3h1h2

þ 3hh2
1 þ h3

1Þ. (14)

The generalized force is derived by forming the virtual work expression. As shown in Fig. 1(b), the two
actuator excitations are assumed to act on the edges of the ribs. Since these two forces will always be equal and
opposite, the piezoelectric force pair will simply be referred to as the piezoelectric force in the remainder of this
work. The piezoelectric force is assumed to have the form

f ðx; tÞ ¼ Re½F eiot�dðx� x0Þ, (15)

where x0 is the location of the force and F is the complex amplitude of the force, which will be described in a
later section. The virtual work can be expressed as

dWT
e ¼

Z L

0

Re½F eiot�½dðx� ðxc1 þ D=2ÞÞ � dðx� ðxc2 � D=2ÞÞ�d
XN

j¼1

f0j

( )
dxdqj, (16)

where d is the moment eccentricity and the 0 notation is used to denote the spatial derivative with respect to x. The
neutral surface of the structure shown in Fig. 1(b) is assumed to be in the exact middle of lower and upper beam
surfaces for the uniform portion of the beam. That is, the effect of the ribs on the neutral axis location is neglected
in this initial study. Consequently, the eccentricity is the distance between the force and this neutral axis,
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given by d ¼ h/2+h1. Eq. (16) leads to a generalized excitation given by

Qj ¼ Re½
_

Qj e
iot�, (17)

where
_

Qj ¼ Fd½f0jðxc1 þ D=2Þ � f0jðxc2 � D=2Þ�. (18)

Substituting the kinetic energy, potential energy, and the generalized force terms into Lagrange’s equations, the
structural equations of the transverse motion are found to be

rbb
XN1

l¼1

ðmTrjl þ ZTrjl Þ €ql þ Eb

XN1

l¼1

ðkTrjl þ bTrjl Þql ¼ Qj, (19)

or in matrix form

½MTr�f €qg þ ½KTr�fqg ¼ fQg. (20)

In this work, a modal transformation is used to gain a better understanding of the structural response. To that
end, the eigenvalue problem is first solved in order to obtain the mode shapes and natural frequencies. A modal
transformation is then used to decouple the system equations into modal equations. In using this approach, the
generalized modal coordinates can be solved in the independent modal space.

Through solving the eigenvalue problem, the generalized coordinates q can be expressed as a linear
combination of modal coordinates qm through the transformation

q ¼ Sqm, (21)

where S is the modal transformation matrix consisting of the orthonormal eigenvectors and the superscript m

refers to modal. The orthogonal modal shape functions of the discontinuous structure can be expressed by the
superposition of the Ritz basis functions as

fm
j ðxÞ ¼

XN1

i¼1

Sði; jÞfiðxÞ. (22)

Therefore, the transverse displacement can be expressed in modal space as

wðx; tÞ ¼
XN1

j¼1

fm
j ðxÞq

m
j ðtÞ; 0pxpL. (23)

Furthermore, the corresponding generalized force can be transformed into modal space as
_

Q
m

j ¼ Fd½fm0

j ðxc1 þ D=2Þ � fm0

j ðxc2 � D=2Þ�. (24)

Solving the decoupled equations in modal space, the amplitudes of the modal coordinates can be
expressed as

W m
j ¼

Fd½fm0

j ðxc1 þ D=2Þ � fm0

j ðxc2 � D=2Þ�

mTr
jj ½ðo

Tr
j Þ

2
� o2�

, (25)

where oTr
j represents the resonant frequencies of the transverse vibration, and mTr

jj represents the modal mass
for the jth transverse vibration mode. Note that the value of mTr

jj is one since the eigenvectors are orthonormal.
Once the modal coefficients W m

j are calculated, the transverse displacement of the structure can be
reconstructed using Eq. (23).

The axial vibration problem for the ribbed beam can be solved using a similar approach. Due to that
similarity, only a brief formulation is presented here. The axial displacement of the beam is expressed by an
N2-term Ritz expansion

uðx; tÞ ¼
XN2

j¼1

cjðxÞWjðtÞ; 0pxpL, (26)
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where cj are the basis functions which satisfy the axial geometric boundary conditions and Wj are the axial
generalized coordinates. The harmonic time dependency of the generalized coordinates are assumed to be

Wj ¼ Re½Uj e
iot�. (27)

By forming the kinetic energy, potential energy, and the generalized force of the axial vibration, the
equations of axial motion can be expressed as

rbb
XN2

l¼1

ðmA
jl þ ZA

jl Þ
€Wl þ Ebb

XN2

l¼1

ðkA
jl þ bA

jl ÞWl ¼ Pj, (28)

where the superscript A will be used to denote terms associated with the axial model and Pj is the axial
generalized force. The generalized inertia coefficient terms mA

jl and ZA
jl are

mA
jl ¼ h

Z L

0

cjcl dx, (29)

and

ZA
jl ¼

XR

i¼1

h1

Z xciþD=2

xci�D=2
cjcl dx. (30)

The generalized stiffness coefficient terms kA
jl and bA

jl are

kA
jl ¼ h

Z L

0

c0jc
0
l dx, (31)

and

bA
jl ¼

XR

i¼1

h1

Z xciþD=2

xci�D=2
c0jc

0
l dx. (32)

The complex amplitude of the generalized force term Pj is then
_

Pj ¼ F ½cjðxc2 � D=2Þ � cjðxc1 � D=2Þ�. (33)

In matrix form, Eq. (28) can be written as

½MA�f €Wg þ ½KA�fWg ¼ fPg. (34)

Again, a modal analysis can be conducted to calculate the forced response of the axial vibrations. Using a
modal transformation, the axial displacement of the beam is expressed in modal coordinate as

uðx; tÞ ¼
XN2

j¼1

cm
j ðxÞW

m
j ðtÞ; 0pxpL, (35)

where again the superscript m represents modal. Following the same procedure as for the transverse vibration,
the amplitude of the modal coordinates can be expressed as

Um
j ¼

F ½cm
j ðxc1 þ D=2Þ � cm

j ðxc2 � D=2Þ�

mA
jj ½ðo

A
j Þ

2
� o2�

, (36)

where oA
j represents the resonant frequencies of the axial vibration, and mA

jj represents the modal mass for the
jth axial vibration mode with a value of unity. Once the coefficients Um

j are calculated, the transverse
displacement of the structure can be reconstructed using Eq. (35).

It can be seen from Eqs. (25) and (36) that, if the actuation force F is known, the structural transverse and
axial dynamic responses can be predicted. In the next section, the resulting actuation force will be calculated
by coupling the structural dynamic response and the piezoelectric actuation strain. Recall that one of the goals
of this work is to examine the relationship between the voltage applied to the actuator and the resulting
structural motion.
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2.2. Piezoelectric actuator modeling

Strain in an unconstrained piezoelectric patch with an applied time-varying voltage v(t) is given by

�pe ¼
d31vðtÞ

hpe
, (37)

where d31 is the piezoelectric strain constant and hpe is the thickness of the piezoelectric patch [1]. For this
study, a harmonically varying voltage

vðtÞ ¼ Re½V eiot� (38)

will be considered. The actual strain in the piezoelectric actuator is

� ¼ �pe � �b, (39)

where eb is caused solely by the axial deformation of the structure at the actuator attachment location. The
actuator is a thin structure so that eb is assumed to be uniformly distributed through the actuator’s cross-
section. eb can be calculated according to

�b ¼
Dl

lpe
, (40)

where lpe is the unstretched length of the piezoelectric actuator and Dl is the axial deformation of the actuator.
As denoted in Fig. 1(a), Dl equals the axial displacement between points PA and PB. Although this
displacement is axial, it results from both the axial and transverse motion of the beam. For linear vibrations,
the transverse vibration’s contribution to the piezoelectric deformation can be approximated by the product
of the rotation angle at the neutral surface and the corresponding moment arm to the connection point
between the actuator and rib. Therefore, Dl can be calculated as

Dl ¼ ½w0ðxc1 þ D=2; tÞ � w0ðxc2 � D=2; tÞ�d þ ½uðxc2 � D=2; tÞ � uðxc1 þ D=2; tÞ�. (41)

Substituting Eqs. (23) and (35) into Eq. (41), and then substituting Eq. (41) into (40), the structure strain
term caused by the beam deflection becomes

�b ¼

PN1

j¼1½f
m0

j ðxc1 þ D=2Þ � fm0

j ðxc2 � D=2Þ�qm
j d þ

PN2

j¼1½c
m
j ðxc2 � D=2Þ � cm

j ðxc1 þ D=2Þ�Wm
j

lpe
. (42)

The axial force within the piezoelectric actuator can be found using the relation

f ¼ EpeApe�, (43)

where Epe and Ape are the Young’s modulus and cross-section area of the piezoelectric actuator, respectively.
Substituting Eqs. (37) and (42) into Eq. (39), and applying Eq. (43), the amplitude of the piezoelectric strain
can be determined as

L ¼
Lpe

1þ C
, (44)

where L and Lpe are the complex amplitudes of the actual piezoelectric strain e and the free strain epe with the
relationships

� ¼ Re½L eiot� (45)

and

�pe ¼ Re½Lpe e
iot�. (46)
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In Eq. (44), the parameter C is the ratio of the actuator’s axial stiffness to the apparent axial stiffness of the
structure at the attachment location as seen by the actuator. The stiffness ratio parameter is given by

C ¼
EpeApe

lpe

XN1

j¼1

fm0

j xc1 þ D=2
� �

� fm0

j xc2 � D=2
� �h i2

d2

mTr
jj ½ðo

Tr
j Þ

2
� o2�

þ
XN2

j¼1

cm
j xc1 þ D=2
� �

� cm
j xc2 � D=2
� �h i2

mA
jj ½ðo

A
j Þ

2
� o2�

8><
>:

9>=
>;. (47)

Note that the Ritz basis functions are unitless and their spatial derivatives have units of m�1. As a result, the
stiffness ratio C is non-dimensional. The apparent axial stiffness of the structure at the attachment location as
seen by the actuator is defined as the reciprocal of the part in braces in Eq. (47). The apparent axial stiffness of
the structure at the attachment location as seen by the actuator will simply be referred to as the apparent
structure stiffness in the remainder of this work. The amplitude of the actuation force exerted on the edges of
the ribs can be determined by substituting Eqs. (44) and (45) into Eq. (43),

F ¼
EpeApeðd31=hpeÞV

1þ C
. (48)

It is seen from Eq. (47) that the transverse and axial motions of the structure both contribute to the
apparent axial stiffness of the structure at the attachment location. For the dynamic case (input voltage
frequency o40), the natural frequencies of the axial vibrations are much higher than those of transverse
vibrations. Therefore, the effect of the axial vibration on the piezoelectric strain can be neglected. For the
static case (static input voltage o ¼ 0), a numerical study is conducted in a later section to illustrate the
contributions of the axial vibrations to the bending moments generated by the piezoelectric force. It is also
interesting to note that the rib height has an effect on the piezoelectric strain and force. Consider, for example,
the case where the modal shape functions are assumed to not change significantly with the rib height. With an
increase in the rib height, as seen from Eq. (47), the apparent stiffness decreases and the corresponding C

increases due to the increase in eccentricity d. As a result, the piezoelectric actuation strain and force will
decrease. As far as the bending moment is concerned, increasing the rib height will increase the moment arm.
However, with the piezoelectric force decreasing, there is a tradeoff between the rib height and the actuator-
generated moment. Consequently, there is an optimum rib height that maximizes the bending moment. This
optimum height will be numerically studied in a later section. When the rib height is reduced to zero, this
piezoelectric-structure model reduces to two line forces on the uniform surface of the beam concentrated at the
end of the piezoelectric actuator. In that case, the product of the line actuator forces and the half-thickness of
the beam are equivalent to bending moments applied at the beam’s neutral axis, a result that is similar to prior
work [6]. A comparison between the zero-height rib approach and the prior work of Fuller et al. [6] will be
presented in a later section.

Eq. (47) implies that the stiffness ratio parameter C is frequency-dependent. When the driving frequency
approaches one of the structure’s resonance frequencies, the apparent axial stiffness decreases, which causes
the stiffness ratio C to increase. Therefore, it is seen from Eq. (48), the piezoelectric force decreases. On the
other hand, the structure is difficult to excite when the excitation frequency is close to the structure’s anti-
resonance frequencies. As a result, the piezoelectric force will be large, as will be explored later. Note that the
dynamic force at zero frequency will be referred to as the static force throughout the remainder of this work.
This terminology should not be confused with that of previous studies where a static analysis was used to find
the relationships for strain.

Once the piezoelectric actuation forces are determined, the structural dynamic response can be predicted
using Eqs. (23) and (35). The induced surface strain on the beam can then be found through application of [7]

�sðx; tÞ ¼ �
hðxÞ

2

q2wðx; tÞ
qx2

þ
quðx; tÞ

qx
. (49)

In active vibration control problems, piezoelectric actuators are used to provide control inputs in an attempt
to reduce the structural vibrations. Although this paper is not about control system design, it is still interesting
to analyze the actuation characteristics in the presence of an external disturbance force. That situation is
addressed in the next section.
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2.3. Actuation force when an external disturbance is present

It can be seen from Eqs. (44), (47), and (48) that the piezoelectric strain and force depend not only on the
input excitation voltage, but also on the structure’s dynamic response. If the structure also has an external
disturbance force, fp, such as shown in Fig. 1(a), the structural response depends on both the actuator and the
disturbance force. Consequently, when the goal is to reduce the vibration level, as in the case of active
vibration control, the disturbance force must be considered when determining the voltage level required for a
desired level of actuation.

For simplicity, the external disturbance in this work is assumed to be a point force transversely exerted on
the beam at the position x ¼ xp, and at the same frequency as the actuator, as shown in Fig. 1(b). The point
disturbance is assumed to have the form of

f pðx; tÞ ¼ Re½Fp e
iot�dðx� xpÞ. (50)

The piezoelectric force can be predicted by following procedures similar to those described in the two earlier
sections of this work. That is, the structural kinetic energy and potential energy terms are the same as before.
Due to the existence of the external disturbance force, though, the generalized force will be different from the
one given by Eq. (18). For the transverse motion, the virtual work done by the actuator and the disturbance
force is given by

dW d
e ¼ dWTr

e þ

Z L

0

f p

XN1

j¼1

fj dx dqj, (51)

where the superscript d is used to represent the virtual work when an external disturbance is present.
Substituting Eqs. (16) and (48) into Eq. (51), the new generalized force for transverse motion is expressed as

_

Q
d

j ¼ Fd½fm0

j ðxc1 þ D=2Þ � fm0

j ðxc2 � D=2Þ� þ F pf
m
j ðxpÞ. (52)

By replacing Qj in Eq. (19) with
_

Q
d

j , the equations for transverse motion with a disturbance force are found.
Furthermore, replacing

_

Q
m

j with
_

Q
d

j , and solving the decoupled modal equations, the modal coordinates can
then be expressed as

qd
j ¼ Re½W d

j e
iot�, (53)

where

W d
j ¼

Fd½fm0

j ðxc1 þ D=2Þ � fm0

j ðxc2 � D=2Þ� þ Fpf
m
j ðxpÞ

ðoTr
j Þ

2
� o2

. (54)

Replacing qm
j in Eq. (42) with qd

j expressed in Eq. (53), and then substituting Eq. (42) into the piezoelectric
actuator strain expression in Eq. (39), the piezoelectric actuator strain is now expressed as

L0 ¼
Lpe � Ld

1þ C
, (55)

where L0 is the amplitude of piezoelectric strain with the presence of the external disturbance, and Ld is the
piezoelectric strain amplitude due to the external disturbance force. The term Ld is given by

Ld ¼
F pd

lpe

XN1

j¼1

fm
j ðxpÞ½f

m0

j ðxc1 þ D=2Þ � fm0

j ðxc2 � D=2Þ�

ðoTr
j Þ

2
� o2

. (56)

Clearly, the piezoelectric strain depends on both the magnitude and phase of the external disturbance Fp.
Replacing Eq. (44) with (55), and together with Eqs. (45) and (46), Eq. (43) can now be written as

F 0 ¼
EpeApeððd31=hpeÞV � LdÞ

1þ C
. (57)
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The piezoelectric force, therefore, depends not only on the input voltage V, but also on the external
disturbance Fp, as shown through Eqs. (56) and (57). Furthermore, due to the addition of the strain term
associated with the external disturbance in Eq. (57), the relationship between the actuation force and the input
voltage will be nonlinear. For example, a doubling of the actuation voltage will not necessarily result in a
doubling of the actuator force, due to the fact that the response caused by the external disturbance impacts the
baseline strain in the actuator, which consequently impacts the actuator’s output force. Of course, a doubling
of the actuator force will always correspond to a doubling of the structural response due to that force since the
structural model is linear. The nonlinear voltage–force relationship will be discussed at length in the next
section.

Before proceeding with the numerical results, it is worth noting that even though the external disturbance
considered above is treated as a transverse point force, the above approach can also be applied to such
disturbances as a point moment, a distributed force, or another piezoelectric actuator. For these other cases,
expressions similar to those in Eqs. (56) and (57) can be obtained for the piezoelectric strain and force.

3. Numerical results and discussions

In this section, the response of a simply supported aluminum beam with four rib discontinuities and a
piezoelectric actuator spanning two of those ribs is investigated numerically. The non-dimensional stiffness
ratio C is first examined for different excitation frequencies and different rib heights. Then, the characteristics
of the actuation force are discussed and the frequency-varying dynamic model for the actuator is compared
with a constant-valued model by using the beam frequency response and surface strain distribution.
Furthermore, the control authority issue is examined by considering different actuator locations.

The length of the beam is L ¼ 1m, the width and thickness of the beam are b ¼ 30mm and h ¼ 8mm,
respectively. The center positions of the ribs are at xc1 ¼ 0.25m, xc2 ¼ 0.35m. xc3 ¼ 0.65m, xc4 ¼ 0.75m, and
the width of the ribs is D ¼ 0.04m. The density and Young’s modulus of the beam are rb ¼ 2700 kg/m3 and
Eb ¼ 70GPa, respectively. As shown in Fig. 1(a), the piezoelectric actuator is bonded such that it spans the
first two ribs with a thickness of hpe ¼ 0.5mm. The material of the piezoelectric actuator is assumed to be
PZT-5A, with the properties listed in Table 1.

3.1. Piezoelectric dynamic forces with and without external disturbances

As mentioned earlier, the stiffness ratio C is a critical factor in determining the actuation force. Using
Eq. (47), C can be calculated for different excitation frequencies and different rib heights. Fig. 2 shows the
stiffness ratio C at different frequencies when the rib height h1 is equal to the beam thickness h. Note that to
obtain a finite response at resonance, a modal damping of 0.02 is assumed and added to Eq. (47). As seen in
Fig. 2, at resonant frequencies the magnitude of the stiffness ratio C is large due to the fact that the structure
appears soft at the attachment location. On the other hand, when the excitation frequency is close to an anti-
resonance frequency, the corresponding C is small, as the structure now appears stiff to the actuator.

At a specific excitation frequency, the stiffness ratio is also related to the structural geometric property of rib
height. Fig. 3 shows how the stiffness ratio changes with the ratio of rib height to the beam thickness for three
excitation frequencies. As can be seen from the figure, for the three frequencies considered, with the increase of
the rib height, the apparent structure axial stiffness decreases, which results in the increase of the stiffness ratio
C. Although the natural frequencies vary with rib height, the first three frequencies are close to 18.4, 74.2, and
Table 1

Material properties of the piezoelectric actuator (PZT-5A)

Density (kg/m3) Strain Constant (m/V) Compliance (ms2/kg)

d31 d33 d15 s11
E s12

E s13
E s33

E s44
E

7750 �1.23e�10 2.89e�10 4.96e�10 1.64e�11 �5.74e�12 �7.22e�12 1.88e�11 4.75e�11
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168.1Hz, respectively. As h1 increases from zero to 2 h, the natural frequency variations are within five percent
of these nominal values. It is interesting to note from the figure that when the excitation frequency is 40Hz,
which is an off-resonance frequency, the stiffness ratio is very close to that of the static (zero frequency)
excitation. When the excitation is close to the anti-resonance frequency (20Hz), the stiffness ratio is lower,
since the structure appears stiffer. In the case of the 20Hz excitation, there is initially a small decrease in
stiffness ratio as the rib height increases, but for h1/h ratios greater than approximately 0.5, C increases with a
trend similar to the 0 and 40Hz cases.

Under a harmonic input voltage with the magnitude of V ¼ 10V, the dynamic piezoelectric force is
computed using Eq. (48), in which no external disturbance is present. The force is then recomputed using
Eq. (57) for the same input with an external disturbance at xp ¼ 0.8m with a magnitude of Fp ¼ 0.1N. The
phase of the input voltage is assumed to be the same as that of the disturbance. The magnitude and phase of
the resulting piezoelectric force for these two cases are shown in Fig. 4. For comparison purposes, the value of
the dynamic force at o ¼ 0 and without an external disturbance is shown by the horizontal dotted line. As the
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excitation frequency increases, the strain eb caused by the deflection of the beam increases for both
cases. As a result, the actual piezoelectric strain given by Eq. (39) decreases. Therefore, the force generated
by the actuator initially decreases for both cases, as shown in Fig. 4(a). As mentioned in an earlier section,
when the excitation frequency approaches the first structural resonance frequency, the structure initially
appears soft to the actuator. Therefore, the force generated by the actuator decreases to a local minimum
point. As the frequency continues to increase to the first anti-resonance frequency, the structure rapidly
becomes stiffer, which results in the increase of the actual piezoelectric force. It is seen from Fig. 4(a)
that the associated piezoelectric force passes through the static value and then rapidly increases to a local
maximum at the anti-resonance frequency. It can be seen from the phase plot in Fig. 4(b) that at the resonance
frequencies, the phase of the piezoelectric force is increased from 01 to 1801; while at the anti-resonance
frequencies, the phase of the piezoelectric force is decreased from 1801 to 01. Due to the system damping,
between the resonance and anti-resonance frequencies, the phase of the actuation force changes by up to 1501
with respect to the input voltage. At off-resonance frequencies, the force and the input voltage are very nearly
in-phase.

The effects of the external disturbance point force on the piezoelectric force can be examined by comparing
the curves in Fig. 4. The structural response is caused by both the piezoelectric actuator and the
external disturbance. As a result, when the excitation frequency is zero, depending on the direction of the
external disturbance, the static value of the piezoelectric force will be reduced or increased. In this work,
the disturbance force has the same phase as the excitation voltage. As a result, the static value of the
piezoelectric force is reduced, as shown in Fig. 4(a). At higher frequencies, it is seen in the figure that with the
presence of the external disturbance, the second resonance frequency and anti-resonance frequency are
reversed, which results in the �1501 phase shift of the piezoelectric force relative to the input voltage. By
increasing the input voltage of the piezoelectric actuator to 30V, the phase of the piezoelectric force between
the second resonance and anti-resonance frequency changes back to positive, and the static value of the force
increases, as shown in Fig. 5.

Fig. 6 shows the ratio of piezoelectric actuation force when the input voltage is increased from 10 to 30V.
The ratio both with and without the external disturbance force is shown in the figure. Clearly, when there is no
external disturbance, the generated piezoelectric force is linearly related to the input voltage, as expressed in
Eq. (48). Therefore, the force ratio should be a constant value of three, as shown in Fig. 6. When an external
disturbance is present, however, the relationship between the input voltage and the piezoelectric force varies
with frequency. It is seen from Fig. 6 that when a disturbance exists, the piezoelectric force ratio will not
remain a constant value of three, especially at low frequencies and in the vicinities of the resonance
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frequencies. Furthermore, with the increase of the external force from 0.1 to 0.2N, this nonlinear behavior
becomes even more pronounced.

3.2. Static model versus dynamic model

As discussed in Section 3.1, the amplitude of the piezoelectric force is frequency-dependent and varies with
the external disturbance. To apply the linear control theories, such as Linear Quadratic Gaussian method, on
this model, it is necessary to linearize the nonlinear dynamic model. The linearization approach examined here
uses the static value of the piezoelectric force as the frequency-independent amplitude of the harmonic input
excitation. In this section, the frequency responses and surface strain responses for the dynamic and static
models are compared.
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The frequency-response functions at an arbitrarily point on the beam x ¼ 0.65m for the two different cases
are shown in Fig. 7. Note that in the figure the 0 dB reference is set as the maximum value of the frequency
response. It is seen from Fig. 7 that the two models provide generally similar predictions of the beam
frequency response, with all significant discrepancies occurring at higher frequencies. As such, the linearized
static model can be used to approximate the nonlinear dynamic model at relatively low frequencies, such as
near the first several natural frequencies.

The surface strains caused by the structural motions are now calculated at the driving frequencies of 20 and
40Hz, and shown in Figs. 8 and 9, respectively. Note that in these two figures the 0 dB references are set as the
maximum values of the surface strains. In Fig. 8, the surface distributed strain at a frequency just higher than
the first natural frequency of the beam is calculated using the dynamic and static models. In Fig. 8, it can be
seen that the dynamic model shows larger surface strain at this frequency, which is because the active structure
has higher resonant frequencies obtained though the dynamic model than through the static model, as
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previously shown in Fig. 7. Fig. 9 shows the surface strain comparisons between the two models at an off-
resonance frequency. It is seen in that figure that the two models predict similar strain results.

3.3. Control authority for different actuator configurations

The piezoelectric actuator-induced moments, which determine the input model of the control system can be
used to measure the control authority of the actuator for a particular configuration. As mentioned in the first
section, the configuration with the actuator spanning the discontinuities will have a different control authority
than when the actuator is bonded on the uniform part of the structure. The impact of this control authority on
the structure’s flexural vibrations will be numerically examined in this section.

By letting the excitation frequency be zero, the static moment M in the beam due to the static actuation
force is given by M ¼ Fd. Fig. 10 shows the induced moment in the beam with respect to the ratio of the rib
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height to the thickness of the beam with an input of 20V. As mentioned in an earlier section, as far as the
bending moment is concerned, increasing the rib height will increase the moment arm, but at the same time, it
will also decrease the apparent structure stiffness at the attachment location, resulting in a smaller piezoelectric
actuation force. Consequently, there is an optimal rib height that maximizes the bending moment. The
induced moment as a function of the ratio h1/h is shown in Fig. 10. It can be seen in that figure that the
optimum rib height is approximately 75% of the beam thickness. With that rib height, the actuator reaches a
maximum in terms of structural control authority.

To verify the analytical results, a FE model was developed using ANSYS. In the FE model, a piezoelectric
actuator is bonded on two adjacent ribs of a beam structure, and the geometric dimensions of the structure are
the same with the analytical model described above. The piezoelectric actuator is modeled with the 3-D
coupled-field solid element SOLID5, which has eight nodes with up to six degrees of freedom at each node.
The beam structure is modeled with the 3-D structural solid element SOLID45. The generated moments in the
structure with an input of 20V are shown in Fig. 10, superimposed over the earlier analytical results.
It is apparent in that figure that the analytical and FE model results match well, with most discrepancies being
5% or less.

The induced moment when the actuator is bonded on the discontinuous side of the beam is now compared
with that case when the actuator is bonded on the uniform side of the beam. The induced moments with the
actuator bonded on the uniform side of the beam are computed using the model developed by Fuller et al. [6].
A moment ratio, Rm, is defined as the ratio of the moment generated by the actuator spanning the two
discontinuities to the moment generated by the actuator bonded on the uniform side of the beam. Fig. 11
shows the moment ratio versus the height ratio of the ribs. It is seen from the figure that when the rib height is
zero, there still exists a small difference between the moments computed using the current model and the
moments computed using the model developed by Fuller et al. [6]. The reason for this discrepancy is that in
their model, the piezoelectric stress is assumed to vary linearly through the cross-section of the piezoelectric
actuator. In the current work, however, it is assumed that the piezoelectric stress is uniformly distributed
through the actuator cross-section. It can be shown that if there are enough Ritz expansion terms N1 and N2 in
Eqs. (1) and (26) in the work at hand, and if the piezoelectric stress is assumed to be uniformly distributed
through the cross-section of the actuator model given in Ref. [6], the two models will generate similar bending
moments at the neutral axis. The assumption of a uniform distribution is based upon the expectation that the
piezoelectric actuators will be thin relative to their distance from the neutral axis, particularly when spanning
two ribs. As such, any stress variations through the cross-section of the actuator, such as linear variations,
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would be negligible in comparison to the mean value. When the rib height is about three quarters of the beam
thickness, the generated moments from the actuator spanning two adjacent ribs are 42% larger than those
when the actuator are put on the uniform side of the beam. As mentioned earlier, it is interesting to examine
the contributions of the structure’s axial deflection on the piezoelectric force. The analytical results of Rm when
the axial deflection of the beam is neglected in the current model are shown as the dotted line in Fig. 11. It is
seen that the solid line and dotted line are relatively close, especially when the thickness ratio is high. This
result means that when the rib height is relatively large, the axial motion of the structure can be neglected
without significant loss of accuracy when considering the bending moment generated on the neutral surface of
the structure by the actuator. The above analytical results were validated by the FE results, which are also
shown on Fig. 11. Note that in the FE analysis, since this is a 1-D structure, the piezoelectric strain in the y

direction is not considered. It is seen from the FE results in Fig. 11, that when the rib height is about three
quarters of the beam thickness, the control authority of the actuator spanning two ribs is 38% larger than
when the actuator is bonded on the uniform side of the structure.

4. Conclusion

An analytical and numerical study of the excitation of a discontinuous structure with a piezoelectric
actuator spanning two adjacent discontinuities is presented. Through numerical examples, it is shown that the
piezoelectric force is out of phase with the input voltage when the excitation frequency is close to the structural
resonance and anti-resonance frequencies. With the presence of an external disturbance, the linearity between
the input voltage and the piezoelectric force will not hold, especially when the actuator is driven at low
frequencies and in the vicinities of the resonance frequencies. Approximating the dynamic piezoelectric force
with its static value as the frequency-independent amplitude of the harmonic force input can generate
relatively good results in structural frequency-response prediction. However, care should be taken at the
resonance frequencies as the static model underestimates the resonance frequencies of the active structure.
Through an analytical study and FEM study, it is also shown that when the actuator is placed such that it
spans two adjacent structural discontinuities, there is a potential for greater control authority over structural
vibrations, as compared to the case of the actuator being bonded to the uniform side of the beam.
References

[1] E.F. Crawley, J. de Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal 25 (1987) 1373–1385.

[2] R.L. Clark, C.R. Fuller, A. Wicks, Characterization of multiple piezoelectric actuators for structural excitation, Journal of the

Acoustical Society of America 90 (1991) 346–357.

[3] E.K. Dimitriadis, C.R. Fuller, C.A. Rogers, Piezoelectric actuators for distributed vibration excitation of thin plate, Journal of

Vibration and Acoustics, Transactions of the ASME 113 (1991) 100–107.

[4] G.P. Gibbs, C.R. Fuller, Excitation of thin beams using asymmetric piezoelectric actuators, Journal of the Acoustical Society of

America 92 (1992) 3221–3227.

[5] J. Wang, W.S. Shepard Jr., K.A. Williams, C.B. Gattis, Active vibration control of a plate-like structure with discontinuous boundary

conditions, Smart Materials and Structures 15 (2006) N51–N60.

[6] C.R. Fuller, S.J. Elliott, P.A. Nelson, Active Control of Vibration, Academic Press, New York, 1996.

[7] J. Pan, C.H. Hansen, S.D. Synder, Study of the response of a simply supported beam to excitation by a piezoelectric actuator, Journal

of Intelligent Material Systems and Structures 3 (1992) 3–16.

[8] O.J. Aldraihem, T. Singh, R.C. Wetherhold, Optimal size and location of piezoelectric actuator/sensors: practical considerations,

Journal of Guidance, Control and Dynamics 23 (2000) 509–515.

[9] K.G. Webber, K.A. Cunefare, C.S. Lynch, ECLIPSE actuators for control of cylindrical structures, The International Symposium on

Active Control of Sound and Vibration, Active 04, Williamsburg VA, 2004, Paper A04-031

[10] E.F. Crawley, E.H. Anderson, Detailed models of piezoelectric actuation of beams, Journal of Intelligent Material Systems and

Structures 1 (1990) 4–25.


	Actuation of a discontinuous structure �with piezoelectric actuators
	Introduction
	System modeling
	Modeling the forced vibration of a ribbed beam
	Piezoelectric actuator modeling
	Actuation force when an external disturbance is present

	Numerical results and discussions
	Piezoelectric dynamic forces with and without external disturbances
	Static model versus dynamic model
	Control authority for different actuator configurations

	Conclusion
	References


